Clustering with feature selection using alternating minimization, Application to computational biology
نویسندگان
چکیده
This paper deals with unsupervised clustering with feature selection. The problem is to estimate both labels and a sparse projection matrix of weights. To address this combinatorial non-convex problem maintaining a strict control on the sparsity of the matrix of weights, we propose an alternating minimization of the Frobenius norm criterion. We provide a new efficient algorithm named K-sparse which alternates kmeans with projection-gradient minimization. The projectiongradient step is a method of splitting type, with exact projection on the ` ball to promote sparsity. The convergence of the gradient-projection step is addressed, and a preliminary analysis of the alternating minimization is made. The Frobenius norm criterion converges as the number of iterates in Algorithm K-sparse goes to infinity. Experiments on Single Cell RNA sequencing datasets show that our method significantly improves the results of PCA k-means, spectral clustering, SIMLR, and Sparcl methods, and achieves a relevant selection of genes. The complexity of K-sparse is linear in the number of samples (cells), so that the method scales up to large datasets.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملA Pragmatic Application of Clustering-Based Feature Subset Selection Algorithm for High Dimensional Data
Using the rapid growth of computational biology and e-commerce applications, high-dimensional data becomes usual. Thus, mining high dimensional data is an urgent problem of great practical importance. Within the high dimensional data the dimensional reduction is a vital factor, to the purpose the clustering based feature subset selection algorithm is proposed in this particular paper. The chara...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.02974 شماره
صفحات -
تاریخ انتشار 2017